2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

2005 ENGINE PERFORMANCE

Self-Diagnostics - MINI

INTRODUCTION

OBD-II Diagnostic Trouble Codes (DTCs) are accessed using a generic scan tool connected to vehicle Data Link Connector (DLC). See<u>Fig. 1</u>. MINI trouble codes can be accessed using BMW's GROUP TESTER ONE (GT-1) or DISplus hardware system. These are often referred to as BMW SCAN TOOL.

The OBD-II connector is located in driver's footwell to left of steering column. See Fig. 2

Control unit provides a substitute value if a failure occurs in an engine performance related component, such as engine (coolant) temperature sensor, intake air temperature sensor, airflow meter or exhaust gas oxygen sensor. These substitute values are canceled when normal engine operation is resumed.

NOTE: All voltage tests should be performed with a Digital Volt-Ohmmeter (DVOM) with a minimum 10-megohm input impedance, unless specifically stated otherwise in testing procedures.

G00400029

Fig. 1: Locating OBD-II Connector Courtesy of BMW OF NORTH AMERICA, INC.

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

<u>Fig. 2: Diagnosis Using OBD-II Connector</u> Courtesy of BMW OF NORTH AMERICA, INC.

MALFUNCTION INDICATOR LIGHT

The Malfunction Indicator Light (MIL) will illuminate under the following conditions:

- Upon the completion of the next consecutive driving cycle where the previously faulted system is monitored again and the emissions relevant fault is again present.
- Immediately if a catalyst damaging fault occurs.

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

G00400028

Fig. 3: Identifying Malfunction Indicator Light Courtesy of BMW OF NORTH AMERICA, INC.

The illumination of the light is performed in accordance with the Federal Test Procedure (FTP) which requires the light to go on when:

- A malfunction of a component that can affect the emission performance of the vehicle occurs and causes emissions to exceed 1.5 times the standards required by FTP.
- Manufacturer-defined specifications are exceeded.

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

- An implausible input signal is generated.
- Catalyst deterioration causes HC-emissions to exceed a limit equivalent to 1.5 times the standard (FTP).
- Misfire faults occur.
- A leak is detected in the evaporative system, or purging is defective.
- PCM fails to enter closed-loop oxygen sensor control operation within a specified time interval.
- Engine control or automatic transmission control enters a limp home operating mode.
- Ignition is in on position before cranking = bulb check function.

A fault code is stored within the PCM upon the first occurrence of a fault in the system being checked. The Malfunction Indicator Light (MIL) will not be illuminated until the completion of the second consecutive "customer driving cycle" where the previously faulted system is again monitored and a fault is still present or a catalyst damaging fault has occurred. If the second drive cycle was not complete and the specific function was not checked, PCM counts third drive cycle as "next consecutive" drive cycle. MIL is illuminated if the function is checked and the fault is still present. See <u>Fig. 4</u>.

	C	DRIVE DRIVE DRIVE YCLE # 1 CYCLE # 2 CYCLE # 3		'E #3	C	DRIV /CLE	'E #4	DRIVE CYCLE # 5			* DRIVE CYCLE # 43								
TEXT NO.	FUNCTION	FAULT CODE SET	MIL STATUS CHECK ENGINE	FUNCTION	FAULT CODE SET	MIL STATUS CHECK ENGINE	FUNCTION	FAULT CODE SET	MIL STATUS CHECK ENGINE	FUNCTION	FAULT CODE SET	MIL STATUS CHECK ENGINE	FUNCTION	FAULT CODE SET	MIL STATUS CHECK ENGINE		FUNCTION	FAULT CODE ERASED	MIL STATUS CHECK ENGINE
1.	YES	YES	OFF																
2.	YES	YES	OFF	YES	YES	ON													
3.	YES	YES	OFF	NO	NO	OFF	YES	YES	ON										
4.	YES	YES	OFF	YES	NO	OFF	YES	NO	OFF	YES	YES	OFF	YES	YES	ON				
5.	YES	YES	OFF	YES	YES	ON	YES	NO	ON	YES	NO	ON	YES	NO	OFF			Ţ	
6.	YES	YES	OFF	YES	YES	ON	YES	NO	ON	YES	NO	ON	YES	NO	OFF		YES	CODE EPOSE	OFF

G00210678

Fig. 4: Malfunction Indicator Light (MIL) Illumination During Drive Cycle Courtesy of BMW OF NORTH AMERICA, INC.

If there is an intermittent fault present and does not cause a fault to be set through multiple drive cycles, 2 complete consecutive drive cycles with the fault present are required for MIL to be illuminated. Once MIL is illuminated it will remain illuminated unless the specific function has been checked without fault through 3 complete consecutive drive cycles. Fault code will also be cleared from memory automatically if specific function is checked through 40 consecutive drive cycles without the fault being detected or with the use of either DISplus, GT-1 or scan tool. In order to clear a catalyst damaging fault from memory, the condition must be evaluated for 80 consecutive cycles without the fault reoccurring.

DIAGNOSTIC TROUBLE CODES

DIAGNOSTIC TROUBLE CODE TABLE

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

See <u>MINI DIAGNOSTIC TROUBLE CODES</u> table to determine which specific Code Description/Diagnostic Link figure applies to a specific code.

NOTE: Diagnosis is not available for that DTCs not listed.

2005 MINI DIAGNOSTIC TROUBLE CODES

DTC	Code Description/Diagnostic Link
P0030	See <u>Fig. 8</u> .
P0031	See <u>Fig. 8</u> .
P0032	See <u>Fig. 8</u> .
P0036	See <u>Fig. 9</u> .
P0037	See <u>Fig. 9</u> .
P0038	See <u>Fig. 9</u> .
P0053	See <u>Fig. 8</u> .
P0054	See <u>Fig. 9</u> .
P0070	See <u>Fig. 17</u> .
P0107	See <u>Fig. 12</u> .
P0108	See <u>Fig. 12</u> .
P0112	See <u>Fig. 11</u> .
P0113	See <u>Fig. 11</u> .
P0114	See <u>Fig. 11</u> .
P0117	See <u>Fig. 11</u> .
P0118	See <u>Fig. 11</u> .
P0119	See <u>Fig. 11</u> .
P0122	See <u>Fig. 10</u> .
P0123	See <u>Fig. 10</u> .
P0125	See <u>Fig. 11</u> .
P0128	See <u>Fig. 9</u> .
P0130	See <u>Fig. 8</u> .
P0131	See <u>Fig. 7</u> .
P0132	See <u>Fig. 7</u> .
P0133	See <u>Fig. 7</u> .
P0136	See <u>Fig. 8</u> .
P0137	See <u>Fig. 8</u> .
P0138	See <u>Fig. 8</u> .
P0171	See <u>Fig. 7</u> .
P0172	See <u>Fig. 7</u> .
P0201	See <u>Fig. 11</u> .
P0202	See <u>Fig. 11</u> .
P0203	See <u>Fig. 11</u> .
P0204	See <u>Fig. 11</u> .

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

P0222	See Fig. 10 .
P0223	See Fig. 10.
P0261	See <u>Fig. 11</u> .
P0262	See <u>Fig. 11</u> .
P0264	See <u>Fig. 11</u> .
P0265	See <u>Fig. 11</u> .
P0267	See <u>Fig. 11</u> .
P0268	See <u>Fig. 11</u> .
P0270	See <u>Fig. 11</u> .
P0271	See <u>Fig. 11</u> .
P0300	See <u>Fig. 5</u> .
P0301	See <u>Fig. 5</u> .
P0302	See <u>Fig. 5</u> .
P0303	See <u>Fig. 5</u> .
P0304	See <u>Fig. 5</u> .
P0313	See <u>Fig. 5</u> .
P0324	See <u>Fig. 12</u> .
P0326	See <u>Fig. 12</u> .
P0335	See <u>Fig. 10</u> .
P0336	See <u>Fig. 10</u> .
P0340	See <u>Fig. 10</u> .
P0341	See <u>Fig. 10</u> .
P0420	See <u>Fig. 5</u> .
P0441	See <u>Fig. 6</u> .
P0442	See <u>Fig. 6</u> .
P0443	See <u>Fig. 6</u> .
P0444	See <u>Fig. 6</u> .
P0445	See <u>Fig. 6</u> .
P0455	See <u>Fig. 6</u> .
P0456	See <u>Fig. 6</u> .
P0500	See <u>Fig. 10</u> .
P0506	See <u>Fig. 9</u> .
P0507	See <u>Fig. 9</u> .
P0601	See <u>Fig. 12</u> .
P0603	See <u>Fig. 12</u> .
P0604	See <u>Fig. 12</u> .
P0638	See <u>Fig. 13</u> .
P0642	See <u>Fig. 13</u> .
P0643	See <u>Fig. 13</u> .
P0652	See <u>Fig. 13</u> .
P0653	See Fig. 13.

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

	See Fig. 13 .
P0653	See Fig. 13.
P0705	See Fig. 16.
P101F	See <u>Fig. 17</u> .
P1106	See <u>Fig. 12</u> .
P1107	See <u>Fig. 13</u> .
P1108	See <u>Fig. 13</u> .
P1109	See <u>Fig. 13</u> .
P1125	See <u>Fig. 10</u> .
P1126	See <u>Fig. 10</u> .
P1229	See <u>Fig. 10</u> .
P1320	See <u>Fig. 5</u> .
P1321	See <u>Fig. 5</u> .
P1320	See <u>Fig. 5</u> .
P1475	See <u>Fig. 6</u> .
P1476	See <u>Fig. 6</u> .
P1477	See <u>Fig. 6</u> .
P1498	See <u>Fig. 17</u> .
P1572	See <u>Fig. 13</u> .
P1575	See <u>Fig. 13</u> .
P1600	See <u>Fig. 12</u> .
P1607	See <u>Fig. 14</u> .
P1611	See <u>Fig. 14</u> .
P1612	See <u>Fig. 14</u> .
P1613	See <u>Fig. 14</u> .
P1615	See <u>Fig. 14</u> .
P1617	See <u>Fig. 13</u> .
P1679	See <u>Fig. 14</u> .
P1680	See <u>Fig. 14</u> .
P1681	See <u>Fig. 14</u> .
P1682	See <u>Fig. 14</u> .
P1683	See <u>Fig. 15</u> .
P1684	See <u>Fig. 15</u> .
P1685	See <u>Fig. 15</u> .
P1686	See <u>Fig. 15</u> .
P1687	See <u>Fig. 15</u> .
P1688	See <u>Fig. 15</u> .
P1689	See <u>Fig. 15</u> .
P1691	See <u>Fig. 15</u> .
P1692	See <u>Fig. 16</u> .
P1693	See Fig. 16

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

	See <u>Fig. 16</u> .
P1699	See <u>Fig. 16</u> .
P1739	See <u>Fig. 16</u> .
P1741	See <u>Fig. 16</u> .
P1742	See <u>Fig. 16</u> .
P1749	See <u>Fig. 16</u> .
P1751	See <u>Fig. 16</u> .
P1752	See <u>Fig. 16</u> .
P1785	See <u>Fig. 16</u> .
P1786	See <u>Fig. 17</u> .
P1787	See <u>Fig. 16</u> .
P1788	See <u>Fig. 16</u> .
P1789	See <u>Fig. 16</u> .
P2096	See <u>Fig. 7</u> .
P2097	See <u>Fig. 7</u> .
P2122	See <u>Fig. 10</u> .
P2123	See <u>Fig. 10</u> .
P2127	See <u>Fig. 10</u> .
P2128	See <u>Fig. 10</u> .
P2138	See <u>Fig. 10</u> .
P2270	See <u>Fig. 8</u> .
P2271	See <u>Fig. 8</u> .
P2300	See <u>Fig. 12</u> .
P2301	See <u>Fig. 12</u> .
P2303	See <u>Fig. 12</u> .
P2304	See <u>Fig. 12</u> .
P2400	See <u>Fig. 6</u> .
P2401	See <u>Fig. 6</u> .
P2402	See <u>Fig. 6</u> .
P2404	See <u>Fig. 6</u> .

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

Component/	Fault	Monitor Strategy	Primary Mattenotion	Threshold	Specified	Secondary	Enable	Specified	Monitor Time Length	MIL
System	Code	Description	Criteria and Signal	Value	Units	Parameters	Value	Units	Frequency of Checks	Burnination
-,										
Canality	00490	Country Strategy Capacity	Increases in downstream second	- 0.17 - 0.73	475	Coolard Internations (TCC)	1 - 80.96		R had percedu (2 seconds), once per disse durite	Two chine contex
	FORES	outful no ale outputy	activity of the second states	2 9.17 - 2.7 a	1 V*	Eval and the short have	1400.27		e namper ous (a seconda), once per onne opce	in our cycles
		1	adanty during control and service			Poet system closed loop	· ·	16.0		1
		1	(DOWN_DYN_CAT)			(LV_LOCL_1)		1		
		1				Vehicle speed (VS)	28.0-80.8	mph		
		1				Engine speed (N_32)	1984-3648 (MT)	apen -		
		1					1588-3498 (AT)			1
		1				Engine load (MAE KGM)	7.8-25.0(MT)	0'5		1
		1				Congram constrained internet	6 9/25 (AT)			1
		1				Hoddled schould gat tomough up	450.01-700			
		1				A Maintain M TEC CAT	490.011700	~		1
		1				enecker(ifA ⁻ (EO ⁻ CAL)	1	1		1
		1								
		1				Anibient pressure (AMP)	75.001	KPa.		1
		1				Time offer start	1	5		
		1				Engine load stability	<= 6.94	9'5		
						(MAF_KGH - MAF_KGH_MMV)				
Misline (CAR8 81)	P0300 P0301	Crankshalt speed variation	Sum of mislines causing an increase	> 30	1/1000	Engine speed	600+41dc-7008 (MT)	15.00	First 1000 engine revolutions after start (360° orank).	Two drive cycles
	P0302 P0303		in emissions for the first 1000 ensine		CRK my				once pet drive cycle	
	P0304	1	sevelutions after start (MIS_SUM_R).				600+4040-6208 (AT)			1
		1				Throttle gradient (TPS, GRO)	+ 2907.5	"TPSvs		
Motion /CLOR B.O	20300 E0301	Cronksholt sneed variation	Sup of minfree country on increase	> 10	1/1000	Air mass cradient (only applied /	IMAE DIFL<130mobile	Chinese .	1000 angina navolulione (2007crank), confinanza	Teo des codes
sectore (con-p.p.d	D0302 D0323	Contraction appears remaining	of apple since when the fast 1000		COV	treast - Se altreastant, INANE CHEY	10 to deabled		toos eifere recommend (per erecht contribute	
	50304 P0303	1	of emissions and the first root		CHARTER .	must a standard fine Ton h	for its case of the	1		1
	P0004	1	endere revolutions (wice"prove"p)							1
		1				Costant temperature (TCO)	> -30			
		1				Ambient pressure (AMP)	>75.0011	KP2		
		1				Instantaneous ignition retard	<47.36 (9TDC disabled)	*CRK		
		1				(applied if timer > 5s after start)	1	1		
		1				(IGA_DIF_MIS)	1	1		1
		1				Engine load (MAF)	spero torque line	- 05		1
		1				Time after start	0.01			1
		1				AC Switched On	0			1
Mafee (CADD 4)	D0200 D0201	Crocksholt speed variation	Sum of minima causing catalant	- 9867	1/200	Injection shut-off	Med cleakberi on	14.4	200 andine muchiform (2007cmsk), continuous	One days curds alter
	Boston Boston	Contraction appears in the last	demonstratives (castrally carating	1-1-00 ADD 1	CON	agreed and on	considered and 10 to delay		200 ergine rerolations (500 crain), contributes	injustrative of the
	C0002 P0000	1	carried on the other to	(ALMAN LAWA)	CUV IN		component off. (o. is delay	1		HALF BURNING
	10304	1	NVOLISOPS (MIG_SOM_A)				onrensistement	1		
	1	1			1					1
	1	1			1	Hough road detection	1 s disabled	N/A		1
	1	1			1	Ant-spin control active	Misl disabled	N/A		1
		1				ABS/ASR active	Mist disabled	N/A		
						Crankshaft oscillation (only applied i	f 7 tdc disabled	N/A		
	1	1			1	tener > 5s after start)	1	1		1
						Low Fuel Level	Misf disabled	N/A		
Misfire	P0313	Indication of low fuel level	Fuel level below a threshold (FTL)	< 10 % of the nominal tank	3	Misfire error already present	1	N/A	N'A, continuous	as for misfire above
		when misline detected		volume		(LV_DC_MAX_MIS_A/B1/B4)				
	P1320	Crankshaft segment	Crankshaft segment adaptation at the	+0.1		N/A	N/A	N/A	One engine cycle (720°CRK)	Two daive cycles
		adaptation curing fuel cut off	limit (SEG_AD_MV_x)		· · ·					
	P1321	Crank Wheel looth count	Toolh error	+01 or 2 kreb	N/A	NiA	N/A	N/A	N/A continuous	Two drive cycles
	 A 1000 March 1 	and the second sec	a second state of							a second s

<u>Fig. 5: OBDII Code Table - (1 Of 13)</u> Courtesy of BMW OF NORTH AMERICA, INC.

Component/	Fault	Monitor Strategy	Primary Mathemation	Threshold	Specified	Secondary	Enable	Seacilied	Monitor Time Length	MIL
System	Code	Description	Criteria and Signal	Value	Units	Parameters	Value	Units	Frequency of Checks	Burnination
EVAP system leak	P2402	Tank leak detection pump	Performed by hardware	N/A	NA	NA	NA	N/A	N'A, continuous	Two drive cycles
detection		(TLDP) solenoid SCB								
	P2401	TLDP solenoid SCG								
1	P2400	TLDP solenoid OC								
I 1	P1475	Read switch open	Reed switch level stays high after	> 0.5	5	Coolant temperature (TCO)	3,75-60	°C	typically 60 seconds,	Two drive cycles
I 1			activation of sciencid within time						once per drive cycle	
I 1	1	1	threshold (LV_IN_RS_TLDP)							
I 1	P1477	Reed switch closed	Read switch level continuously low	>1		Ambient pressure (AMP)	>76.2994	kPa		
	1	1	after activation of solenoid within time							1
I 1	1	1	threshold (LV_IN_RS_TLDP)							
1	P2404	Pump problem	Reed switch level stays low after de-	> 2	5	Battery voltage (VB)	9.04-16.04	v		
1			activation of solenoid within time							
1	1	1	threshold (LV_IN_RS_TLDP)							
1	P0441	Purge valve stuck in closed	Time period above threshold when	>1.1		intake air temperature at start	4.5-60.0	~C		
1	1	position	purge value is opened after leak			(TIA_ST)				
1	1		detection check (T_PER_TLDP)							
	P1476	Clamped tube	Time period of any of 5 first pump	> 5	5	Coolant temperature difference	> 15	°C		1
1	1	1 · ·	cycles (T_PER_TLDP)			between engine start and engine				
1	1	1				previously slopped (
1	1	1				TCO_ES_TLDP TCO_ST_TLDP)				
1	P0455	Big leak, missing cap	Time period after 92 fast pulses	<= 0.52	•	Change in barometric pressure	< 0.9968	kPa .		
1	1		(T_PER_TLOP)			since engine start				
	1	1				(AMP - AMP_ST)				1
1	P0456	Leakage over 0.5 mm	Time period after 92 fast pulses	6.0		Vehicle speed (VS)	< 74.56 all leaks and	mph		
1	1		(T PER TLDP)				clamp tube			
1	P0442	Leakage over 1.0 mm	Time period after 92 fast pulses	>1		Purge valve has opened enough on	CPS > 16-48	%.		
1	1	1	(T_PER_TLOP)			previous driving cycle				
1	1	1				(LV_PREV_OPEN)				
1	1	1				Time after start (T_AST)	>=20 and <=360			
1	1	1				Rough road recognition (PR)	Disabled for 5s when PR	N/A		
						Downhill recognition (DHL)	or DHL detection	N/A		
Carester purge valve	P0443	SC8	Performed by hardware	N/A	N/A	N/A	N'A.	N/A	1.3 second.	Two drive cycles
	P0445	800							0.13 second	
1	P0444	I 00				1	1		1	1

Fig. 6: OBDII Code Table - (2 Of 13) Courtesy of BMW OF NORTH AMERICA, INC.

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

Componenti	Early .	Manifor Strategy	Drimany Mallunction	Threshold	Secolied	Secondary	Eashia	Encoded	Manufar Time Length	640
System	Code	Description	Criteria and Signal	Value	Units	Parameters	Value	tinits	Erementer of Chacks	Illumination
Frail system	E0171	Leaching	Adaptives and controller limits	> 25% for > 40s in 320 s		Fuel waters closed loop	1	N/A	320 seconds	Two ridue cucles
			permanent deviation (TLLAM	- 10 / F 10 / F 10 / F 10 / F		(LV LSCL 1)			0.03 second	1.00.000104000
	1	1	TLAD FAC MWV BELL			Canister load (CL_MMV)	>1	N/A		
	1	1	TI AD ADD MMV REL QUO :			MAF stability	+ 2.22	0'5		
	1	1	T_SUM_MAX_FSD)			(MAF KOH - MAF KOH MMV)				
	P0172	Rich limit	1	< -25% for > 50s in 320 s	5.5	TPS stability (TPS, GPD)	< 58.6	5.5		
	1	1				Engine speed (N_32)	> 1408	15.00		
	1	1				Coolant temperature (TCO)	>.75	*C		
						Ambient pressure (AMP)	>75.0011	kPa		
	P2095	Rear O2 Dynamic Fuel Trim -	Adaption reaches low limit	< -1.56	N/A	Conditions for adaption:			N/A.	Two drive cycles
	1	system LEAN	(TI_LAM_COR_AD_x)			Rear O2 Sensor cutside voltage	-0.0196 / -0.0635 from	v	0.01 second	
	1					window (VLS_DOWN)	target			
	1	1				Fuel system closed loop	1	N/A		
	1	1				(LV LSCL 1)				
						Key on (LV_KEY_ON)	1	N/A		
	P2097	Rear O2 Dynamic Fuel Trim	Adaption reaches high knut	> 1.56	N/A	Engine not idling (LV_IS)	0	NA		
	1	system RICH	(TI_LAM_CON_AD_x)			Engine speed (N_32)	1952-3808	rpm		
	1	1				Engine Load (MAF)	0.22-0.6 (MT)	gnev		
	1	1					0.25-0.6 (A1)			
	1	1				Coolant temperature (TCO)	> 45	*C		
	1	1				Downstream sensor ready	1 1	N/A		
	1	1				(LV_LS_DOWN)				
	1	1				C2 heaters ready (LV_OP_LSH)	1	Per A		
Testerne At server	00133	Description (inc. of excitoring	from of (A) another project from a		<u> </u>	Evel on theme of a series		8416	£ 00 second and a second second bios study	Two drive coulors
oponeon oz sersor	1 10103	02 140107	OUS COVC SUM 11 End canod Serve	pariod lime 1 min	· ·	0 V 1 SC1 15			5 C/2 sensor pendos, once per drive cycle	in same cycles
	1	OF MAILO	for back (VLS CYC MAX MES 1)	percounter gant		Canister load (CL_MMV)	- 2	N/A		
	1	1	1010010100_010_0100_1	> 150 202 (MD cm and		Coolant temperature (TCC)	80.25	*C		
	1	1		pariod lime" 3		02 sensor heating	125,080	÷.		
	1	1		> 2.54 3.00 (AT) ave		(LSHPWM UP/DOWN)				
	1	1		period time" 3		Mass air flow (MAF)	0.2-0.64	gitev		
	1	1				Engine load (MAF_KGH)	6.94-27.78	0.9		
	1	1	Sum of Q2 sensor period times	> sum threshold " factor		Engine speed (N. 32)	1984-3488 (MT)	10m		
	1	1	(VLS_CYC_SUM_1)				1568.3296 (AT)			
	1	1		> 1.502.03 (MT)*2		Vehicle speed (VS)	24.85 - 68.35	mph		
	1	1		> 2.543.00 (AT)*2		Engine load stability (MAF_KGH -	< 1.94	35		
	1	1				MAF_KGH_MMV)				
	1	1				Time after start (THD_VLS_AST)	1	•		
						Ambient pressure (AMP)	>75.00114	kPa		
1	P0132	sca.	Sensor voltage above threshold	> 1.002V for 10s	V.s.	Key on (LV_KEY_ON)	1	N/A	10 seconds,	Two drive cycles
1			(VLS_UP_I)						0.01 second	
1	P0131	SCG or pir leakage	Sensor voltage below threshold	< 0.039V for 25s	V. 5	Key on (LV_KEY_ON)		NA	255	
1	1	1	(VLS_0P_0		1	Fuel system closed loop	1	NºA.	0.01 second	
1	1	1				(LV_LSCL_1)	- 8100			

Fig. 7: OBDII Code Table - (3 Of 13) Courtesy of BMW OF NORTH AMERICA, INC.

Component/	Fault	Monitor Strategy	Primary Mathemation	Threshold	Specified	Secondary	Enable	Specified	Monitor Time Length	MIL
System	Code	Description	Criteria and Signal	Value	Units	Parameters	Value	Units	Frequency of Checks	Illumination
	P0130	00	Sensor voltage within threshold	0.22V < U < 0.611V for 10s	V.s.	Key on (LV_KEY_ON)	1	N/A	10 seconds,	
1			(VLS UP I)			Engine speed (N 32)	< 8000	15.00	0.01 second	
1	1	1	(Fuel cut or closed loop (LV_PUC or	1	NA		
1	1	1				LV LSCL 1)				
Upstream 02 sensor	P0032	SC9	Performed by hardware	N/A	N/A	N/A	N:A	N/A	1.3 seconds.	Two drive cycles
heater	P0031	\$03							0.13 second	
1	P0030	OC OC								
1	P0053	Resistance out of limits	Calculated resistance (RLSH_UP_1)	< 1.512 or > 25.012 for 8s	12.5	Engine lead (MAF_KGH_MMV)	6.94-44.44	2'5	8 seconds,	1
1	1	1				Engine Speed (N)	<=7008 (MT)	10 Million	continuous	
1	1	1					<#6208 (AT)			
1	1	1				Engine running (LV_ES)	1	N'A		
1	1	1				Engine not cranking (LV_ST)	0	N/A		
1	1	1				Exhaust gas temp (TEG_CAT)	350.006-549.995	~~		
						Battery voltage (VB)	10.95-16.04	V		
Downstream O2	P2271	Lambda is forced lean unbl	C2 sensor voltage (VLS_DOWN_1)	VLS_DOWN does not cross	V.s	Coolant temperature (TCO)	> 80.25	~C	To, only if no response from	Two drive cycles
sensor	1	rear O2 sensor voltage drops	does not cross threshold.	0.6794 V after 7s		Fuel system closed loop	1	N/A	downstreem sensor	
1	1	lean - error if no reaction				(LV_LSCL_1)				
1	1	1				Vehicle speed (VS)	27.95 - 90.78	mph		
1						Engine speed (N_32)	1984-3048	ap en		
1	P2270	Lambda is forced rich until	O2 sensor voltage (VLS_DOWN_1)	VLS_DOWN does not cross	V. s	Engine load (MAF_KGH)	7.70 - 25 (MT)	9'5		
1	1	rear O2 sensor voltage drops	does not cross threshold.	0.6794 V alter 7s			6.94 - 25 (AT)			
1	1	noh - error if no reaction				Exhaust gas temperature sufficient	1	N/A		
1	1	1				(LV_TEG_CAT)				
1	1	1				Ambient pressure (AMP)	>75.001	kPa .		
1	1	1				Engine load stability	6.94	23		
1						(MAF KOH - MAF KGH MMV)				
1	P0138	SCB	Sensor volkage above threshold	> 1.1V for 10s	V. 5	Key on (LV_KEY_ON)	1	N/A	10 seconds,	Two drive cycles
1			(VLS_DOWN_1)		1				1 second	
1	P0137	SCG or air leakage	Sensor voltage below threshold	< 0.039 V for 15s	1	Lambda trim active	1	N/A	15 seconds,	
1	1	1	(VLS_DOWN_1)			(LV_LAM_COR_AUTH)			1 second	
1						Engine speed (N_32)	-8000	rg m		
1	P0136	00	Sensor voltage within threshold	0.22 V < U < 0.611 V for 7a		Fuel cut (LV_PUC)	1	N/A	7 seconds,	
1	1	1	(VLS DOWN 1)			MAF sum in fuel cut	>5	9	1 second	
1	1	1				(MAF_SUM_PUC)				
1	1	1				Engine speed (N 32)	-8000	mm	1	

Fig. 8: OBDII Code Table - (4 Of 13) Courtesy of BMW OF NORTH AMERICA, INC.

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

Companyall	Early .	Monitor Strategy	Drimony Mallunchan	Threshold	Encolind	Secondary	Ensible	Searched	Manifer Time Length	840
System	Code	Description	Criteria and Signal	Value	Units	Parameters	Value	Units	Frequency of Checks	Illumination
Downstream 02	P0028	sch	Performed by HW	N/A	N/A	NA	N/A	N/A	N'A continuous	Two drive cycles
sensor heater	P0037	\$03								
	P0035	OC								
1	P0054	Resistance out of limits	Calculated resistance	<1.50 or \25.00 for 8s	0.6	Engine load (MAF_KGH_MMV)	6.94-44.44	015	8 seconds.	
1			(PLSH_DOWN_1)			Engine speed (N)	<=7008 (MT)	100	continuous	
1							<#5208 (AT)			
1						Engine running (LV_ES)	1	N/A		
1						Engine not cranking (LV_ST)	0	N/A		
1						Exh gas temp (TEG_CAT)	350.006-849.995	°C		
						Battery voltage (VB)	10.26-16.04	V V		
kile engine speed	P0506	Monitoring of engine speed	Actual engine speed less than	< setpoint -100	rpm	idie speed control requested	1	N/A	5 seconds,	Two drive cycles
selpcint diagnosis		deviation from idle speed	selpoint minus threshold (N)			(LV REQ ISC)			0.1 second	
1		setpoint				Battery voltage (VB)	> 10.96	v		
1						Vehicle not moving (LV_VS_RUN)	0	N/A		
1						Sufficient time since engine start	0	,		
1						(LV_AST)				
1						Time since idle speed state is	5			
1						activated (T_ISC_DIAG)				
1	P0507	Monitoring of engine speed	Actual engine speed more than	> setpoint + 200	rpm -	Coolant Imperature (TCO)	80.25-110.25	~C		
1		deviation from idle speed	setpoint plus threshold (N)							
1		setpoint				Motorized Perotle not disabled	•	N/A		
1						(LV_MTC_CUR_OFF)				
1						Mass ar flow (MAF_HB)	< 0.36	gitev		
1						Relative flow from Canester Purge	<0.149995	N/A		
1						Solenoid Valve				
1						(REL_FLOW_CPS_AV)		~		
1						Canisher Purge Scienced Valve	-34.9	~		
The second st	Eq. 14	Contract of the Contract of the	TOO - C TOO 1641 OFF 0110		20	Opening (CPPWM)	. (2)		find and the out of a strength to second here and the	Toron delana constitute
The GROSSER	PUTES	Engine cociarit semperature	TOO CO TOO MIN OBD CIAG	C TOO MIN OED DING #-	1.8	Substitute contant temperature	2.40		Substantia Value of coolant samparature reads to	Two area cycles
1		(ICO) As sociation value of	6456 100_506 \$ C_100_111_WIN			(100_500)	- 400 000		reach solv to (typically 5 to 25 mine depending on	
1		dico guilt	TOO MALE O TOO THE MIN	C HOO TH HIN - 0 THC		h at time in faul Cat (BUC)	\$ 160	1 2	searching temperature and driving scylet, once per	
1		(100_303)	C LOS TOO TH MINEY	C T TOO TH MAL 200400		is of time helps min air fear		2	cerve cycle	
1			C T TOO THE MEN HAR	C_1_TOO_TH_MINTE BOSINGS		GOAD MIN DEDC TH DAG	~~~	~		
1			TOO BUD - C TOO TH MIN			Remember of time in inte	-45.0004			
1			100_30370_100_110044			IN DEDC TOO DI ALIS DIAG		~		
1	1			1	1	Deviation with air temperature at	15.95	*C		
1	1			1		tat	- 240	Ň		
1	1			1		Conjunt temperature at start	1/2 and x 65.25	~C		
1	1			1	1	(T00 ST)		ľ		
1	1				1	Air terur erahme at start (TIA_ST)	.12	°C		1

<u>Fig. 9: OBDII Code Table - (5 Of 13)</u> Courtesy of BMW OF NORTH AMERICA, INC.

Component/	Fault	Monitor Strategy	Primary Mallunction	Threshold	Specified	Secondary	Enable	Specified	Monitor Time Length	MIL
System	Code	Description	Criteria and Signal	Value	Units	Parameters	Value	Units	Frequency of Checks	Burnination
Throttle position	P0123	SCB of OC	TPS 1 voltage (TPS_1_BAS)	> 4.9071	V	Supply voltage correct	0	N/A	0.08 second.	One drive cycle
sensor (TPS)	P0122	\$03		< 0.0244	V	(LV V REF TPS ERR DET)			0.005 second	
	P0223	SCB	TPS 2 voltage (TPS_2_BAS)	>4.9560	V	1				
	P0222	SCG or OC		< 0.0978	V					
	P1125	Plausability error	Difference between TPS 1 and TPS 2	> 5	*	N/A	N:A	N/A	0.39 second.	1
	P1125	Large plausability error	(TPS_MTC_1 and TPS_MTC_2)	> 18	<u>5</u>				0.005 second	
	P1229	Throttle adaption outside	Measured maximin TPS values within	> 0.0244	V	Battery voltage (VB)	> 6.55	v	0.2 second.	1
		tolerance	hystoresis limits (TPS_x_BAS)						0.005 second	
		Spring test error	Filtered throtile position in second	>23.14 and <25.85 in 500ms	5 m	Coolant temperature (TCO)	-30-100-142.5	·с	0.8 second.	
			wendow within time threshold						0.005 second	
		The best shows and	Theorem is the state of the second	Through that a 100mm	Maria	Indukte die familie and hum (TRA)		~	AE usuad	•
		Carlo Hone Check enter	within time threshold Of TEE VI	Traditional ins Totoms	v, m	times as we permit (104)	3.00	Ū	0.005 second	
		Bottom machine is at Lord	There the units is used out within first	0.0 7165 arc4 2016 5 in 200	V. ma	1			1.025 second	•
		Boardin mechanican mini	Breakers M TPS V)	0.0.7 100 01 4.28 10-0 41 200	v. mo				0.006 second	
Dada uska sasso	P3122	679	Voltage /DVC 1 DAGL	> 4.9022	U	Supply unlines correct	0	N/A	0.15 second	One drive curle
/PUR)	P2122	500 - 00	Volume (PVS_1_BAS)	< 0.0180		AV V DEE DVS 1 EDD DET.	, v	1422	0.01 second	Crist Grine Cycle
10.4.01	P2128	803	Voltage (PVS S RAS)	-26022	÷.	Supply unitage correct	0	N/A	0.01 000012	
	P2127	50G or OC	Voltage (PVS 2 BAS)	# 0.0312	l v	ILV V REE PVS 2 FRR DET	-			
	P2138	Plausability error	Ofference between average of PVS 1	> 12.11-25.78	5	NA	N/A	N/A	0.0 second	1
			and PVS 24PV_AV_1& PV_AV_2)						0.01 second	
Carrishaft position	P0340	No signal	NA	N/A	N/A	N-A	N'A.	N/A	10 engine revolutions, continuous	Two drive cycles
sensor	P0341	No plausible signal	Alignment to crankshaft position	Outside allowable window	N/A				-	· ·
			sensor	31st. 41st looth						
Crankshaft position	P0335	No signal	Crankshaft leath acquisition	No crankshaft tooth seen after 10			Before synchronization		20 engine revolutions, N/A	Two drive cycles
sensor				camphalt edges recorded -						
				before synchronization.						
	P0336	No plausible signal		Teeth number error > 2			After synchronization		12 engine revolutions, N/A	
Vehicle speed signal	P0500	Left and right front speed	No signal from both left and right	Diagnosis performed by ABS	NA	NA	NA	NºA	2 seconds,	Two drive cycles
dagnosis		sensor taiture	front speed sensors	ECU					0.01 second	
			(CAN_VRD_LV_ASC and							
		1	CAN VED BV ASCL	1		1	1			1

<u>Fig. 10: OBDII Code Table - (6 Of 13)</u> Courtesy of BMW OF NORTH AMERICA, INC.

Component/	Pault	Monitor Strategy	Frimary Mallunction	Threshold	Specified	Secondary	Enable	Specified	Monitor Time Length	MIL,
System	Code	Description	Criteria and Signal	Value	Units	Parameters	Value	Units	Frequency of Checks	Rumination
Aur intake	P0113	SCB of OC	Volage (TIA_BAS)	> 4.89	1 X	NA	NA	N/A	2.5 seconds.	Two drive cycles
temperature sensor	P0112	\$08	Voltage (TIA_BAS)	< 0.07	V				0.1 second	
dagnosis	P0114	Internitienit fakure	Gradient between filtered and current	> 0.75	*0	Engine running (LV_ES)	0	N/A	4 seconds,	Two drive cycles
		1	intake air sensor values exceeds			Engine not starting (LV_ST)	0	N/A	I second	
Coolant temperature	P0118	\$08 or OC	Voltage (TCO_BAS)	> 4 98	V V	N-A	N/A	N'A	2.5 seconds.	Two drive cycles
sensor diagnosis	P0117	\$09	Voltage (TCO_BAS)	< 0.07	V				0.1 second	
	P0119	Internitient follure	Gradient between filtered and current	> 975	*0	Engine running (LV_ES)	0	N/A	4 seconds,	Two drive cycles
			occiont sensor values exceeds			Engine not starting (LV_ST)	0	N/A	I second	
Coolant temperature	P0125	Rationality check, TCO model	Coolant temperature does not reach	< threshold - difference to model	°C, s	Substitute coolant temperature	> 5.2520.25	°C	75-1506.	Two drive cycles
plausobility	1	· hintoke air temperature:	closed loop enable threshold (TCO)	temp (approx. 150 secs for fault		(TCO_SUB)			0.5 second	
	1	mass air flow)		detection at -7°C and 75 secs for		Minimum time after start	> 30320	5		
1	1			fault detection at 10°C dependent		(T_TCO_MIN)				
1	1	1		on driving style?		Ensine running (LV_ES)		N/A		
1	1	1				Percentage of time in Fuel Cut	< 100	5		
1	1	1				(PUC PERC TOO PLAUS DIAG)				
1	1	1				Percentage of time in idle	< 100	5		
1	1	1				IS PERC TOO PLAUS DIAO		~		
1	1	1				Estantane of time in few load	< 100			
1	1	1				GOAD MIN PERC TH DIAGO				
1	1	1				TIA deviation since shad	-142.6			
1	1	1				(TA DE TA DIAG)	1.142.9	۰ ۲		
bir sheet on her	00020	809	Deducered by MAV	14.1	N/A	(THE DE_THE DOWS)	8/24		N/3	Turn datus conten
discourses and	POZDE		Pariotina by Phy	1000		194	164		100	Two onversiones
Giegennes	P0203	1							commoos	
1	P0265	1								
1	P0271									
1	P0261	300			1	1		1		
1	P0264	1			1	1	1	1		
1	P0267	1								
1	P0270					1	1	1		
1	P0201	00			1	1	1	1		
1	P0202	1			1	1	1	1		
1	P0203	1				1	1	1		
	P0204	1								

<u>Fig. 11: OBDII Code Table - (7 Of 13)</u> Courtesy of BMW OF NORTH AMERICA, INC.

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

Component/	Fault	Monitor Strategy	Primary Mathunction	Threshold	Specified	Secondary	Enable	Specified	Monitor Time Length	MIL
System	Code	Description	Critoria and Signal	Value	Units	Parameters	Value	Units	Frequency of Checks	Illumination
Knock sensor	P0326	Relative threshold	Difference between raw and filtered	< 0.0409 - 0.0608	V	Coolant tempetature	> 50.25	°C	5 seconds,	Two drive cycles
dagnosis	1		knock sensor signal (Delta			Engine load	> 0.36	g/RV	continuous	
			KNKS_BAS & KNKS_BAS_MMV)			Engine speed	> 2016	igan.		
Knock sensor circuit	P0324	No reliable SPI communication	Performed by HW	N/A	N/A	Engine running (UV_ES)	0	N/A	5 seconds,	Two drive cycles
error									continuous	
ECU selftest	P0604	Internal RAM error	Performed by hardware	N/A	N/A.	NA	N/A.	N/A	NIA. every ECU reset	Two drive cycles
	P1600	External RAM error								
	P0603	NVMV write ervor								
	P0501	CHICSUM error	Performed by hardware	N/A	N/A	NA	N/A	N/A		
Ignition diagnosis	P2301	SC8	Performed by basic software	True	N/A	NA	N/A	N/A	N/A, centinuous	Two drive cycles
	P2304		(LV_SCP_IGCx or LV_INH_KGCx)							
	P2300	SCG/CC	Performed by basic software							
	P2303		(LV_SCG_IGCx or LV_OC_IGCx)							
Manifold pressure	P0108	SCB	RMS of Manifold Pressure Sensor	> 51870	N/A	Engine stopped (LV_ES)	1	N/A	5 segments.	Two drive cycles
sensor diagnosis			Signal (MAP_SEG)			Engine running (LV_ES)	0	N/A	continuous	
	P0107	SCG or OC	RMS of Manifold Pressure Sensor	< 64	N/A	Throttle MAF gradient	<2.5"TPS in 15revo	*TPS, rev		1
	1		Signal (MAP_SEG)			(TPS_MAF_GRD)				
						Key on (LV_KEY_ON)	True	N/A		
	P1108	Plausability diagnosis	MAP too low, engine stopped (MAP)	< 60	NPa	Engine stopped (LV_ES)	1	N/A	8 segments.	1
	1					Mandold pressure (MAP)	<105.0016	kPa	continuous	
1	1	1				First valid tooth not recognized	0	N/A		1
	1					(LV FIRST VLD TOOTH)				1

Fig. 12: OBDII Code Table - (8 Of 13) Courtesy of BMW OF NORTH AMERICA, INC.

Component/	Fault	Monitor Strategy	Primary Mallunction	Threshold	Specified	Secondary	Enable	Specified	Monitor Time Length	MIL
System	Code	Description	Criteria and Signal	Value	Units	Parameters	Value	Units	Prequency of Checks	Burnination
	P1107	Plausability dispresis	MAP 655 IOW 21 Idle, engine running	< 12	10-2	engine running (LV_Es)		PeiA		
	1	1	(wer)			1110 050 000 500	10000181 301675	100.197		1
	1	1				(MAP_SEG_GRU_EPPR)	-0.6178-0 in 1610-0	1700		
	1	1				The MAE CODE	<2.5" IP 3 IN 15Revs	1195, 107		
	1	1				(IPS_MAP_GRU)	- 1704			
	1	1				English speed (n_32)	105 0018	10		
	1	1				No territo president (11/ CT)	100,0010	1112		
	1	1				Engine Idine (LV PD)				
	P1108	Reveability diagnosis	MAP too low at full load for low	- 60	kPa.	Engine running (CV 13)		N/A	1	
			entrine streed (MEP)			MAP contact	10000 in 30 evs	NA rev		
	1	1				MAR SEG GRO ERRY				1
	1	1				Throttle MAF oraclent	<2.5"TPS in 15tevs	*TPS, rev		
	1	1				(TPS_MAE_GRD)				
	1	1				Engine speed (N 32)	< 4000	1500		
	1	1				Throttle position (TPS)	>80.14	-TPS		
	1	1				Manifold pressure (MAP)	<105.0016	kPa		
						No torque request (LV_CT)	0	N/A		
	P1109	Plausability diagnosis	MAP too high in decoeleration (MAP)	> 60	KPa.	Engine running (LV_ES)	0	N/A	1	
						MAP gradient	10000 in 30revs	N/A, rev		
	1	1				(MAP_SEG_GRD_ERR)				
	1	1				Throttle/MAF gradient	<2.5"TPS in 15revs	*TPS, rev		
	1	1				(TPS_MAF_GRD)				
	1	1				Engine speed (N_32)	> 1696	epm –		
	1	1				Mandold pressure (MAP)	>15.0002	kPa		
						No torque request (UV_CT)	1	N/A		
Sensors 5V supplies	P0643	908	Voltage (VCC x)	> 5.8160		NA	N/A	N/A	0.04 second.	One drive cycle
dagnosis	P0542	\$06700	Voltage (VCC_x)	4 4 2522					continuous	
	P1572	Noisy signal	Delta voltage & average voltage	> 0.7038						
			(VCC_X_DIF)							
	P0653	SCB	Voltage (VCC_x)	> 5.8160	1			1		
	P0652	scaroc	Vottage (VCC_X)	< 4 2522	1			1		
	P1575	Moley signal	Uena vonage & average voltage (VCC_X_DIF)	> 9.7038						
Motorized	P0638	Throttle mailunction	Delta setpoint and actual value	> 5% for 0.38s	5.5	Key on (LV_KEY_ON)	1	N/A	0.38 second.	One drive cycle
@woltle(MTC)			(TPS DIF)			Engine running (LV ES)	0	N/A	continuous	
MTC H bridge	P1617	Electronic Throttle Control	Performed by the component driver	N/A	N/A	NiA	N/A	N/A	0.15 second.	One drive cycle
dagrosis		driver failuse							0.005 second	

Fig. 13: OBDII Code Table - (9 Of 13) Courtesy of BMW OF NORTH AMERICA, INC.

Component/	Fault	Monitor Strategy	Primary Mathunction	Threshold	Specified	Secondary	Enable	Specified	Monitor Time Length	MIL
System	Code	Description	Criteria and Signal	Value	Units	Parameters	Value	Units	Frequency of Checks	Illumination
CAN bus diagnosis	P1613	ASC module error	Performed by SW	N/A	N/A	Battery voltage (VB)	>8	v	0.001 second.	Two drive cycles
									0.000025	
I I	P1612	INSTR module error	Performed by SW	N/A	N/A.				0.23 second.	
									0.0046 second	
	P1611	Transmission control module	Performed by SW	NA	N/A				0.02 second.	
I I		error							0.0008 second	
	P1607	CAN bus error	Performed by SW	N/A	N/A				0.050 second.	
									continuous	
SPI-bus diagnosis	P1615	SPI-bus failure	Performed by SW	N/A	N/A	N/A.	N/A	N/A	0.3 second.	Two drive cycles
									0.1 second	
Sofety level 2.5.3	P1679	Monitoring of torque losses	Torque loss calculation error	Limit exceeded in threshold map (Nm	Torque monitoring active	1	N/A	0.36 second.	One drive cycle
I I			(TQ_LOSS_MON)	78138)		(LV_TOL_NON_ACT_MON)			0.04 second	
I I	P1680	Monitoring of A to D	PVS ratio difference exceeds	> 0 273	v	Engine running (LV_ES)	1	N'A	0.48 second.	One drive cycle
I I	1	conversion	Breshold (V PVS 2 MC -						0.04 second	
I I			V_PVS_2_MU)							
I I	P1681	Monitoring of engine speed	Engine speed difference exceeds	576	ipm.	Engine running (LV_ES)	1	NA	0.48 second.	One drive cycle
I I	1		threshold (N_02 - N_02_SUB_MON)						0.04 second	
	P1682	Monitoring of proportional	Error in torque demand from PD-part	Maximum PD-part limit exceeded	Nm	Torque monitoring active	1	N/A	0.48 second.	One drive cycle
I I	1	derivative (PD) part of idle	(TQ_DIF_P_D_IS_DIF_MON)	(4052)		(LV_TQL_MON_ACT_MON)			0.04 second	
		speed controller								

Fig. 14: OBDII Code Table - (10 Of 13) Courtesy of BMW OF NORTH AMERICA, INC.

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

Component/	Fault	Monitor Strategy	Primary Mallunction	Threshold	Specified	Secondary	Enable	Specified	Monitor Time Length	MIL
System	Code	Description	Critoria and Signal	Value	Units	Parameters	Value	Units	Frequency of Checks	Illumination
	P1683	Monitoring of integral (I) part of	Error in torque demand from I-part	>25	Nm	Idle speed controller not in ramp	0	N/A	0.48 second.	One drive cycle
		ide speed controller	(TO DIF I IS MON)			limit operation			0.04 second	
			Error in torque demand from I-part	> 15Nm (MT) > 20Nm (AT) and <	Nm, rpm	(LV_PAS_RAMP_ACT_IS)				
			(TQ_DIF_I_IS_MON and	612rpm						
			N_DIF_SP_IS_MON)							
			Error in torque demand from I-part	>25	Nm	Idle speed centroller in ramp limit	1	N'A		
			(TO DIF I IS MON)			operation				
						(LV_PAS_RAMP_ACT_IS)				
	P1684	Monitoring of minimum torque	Minimum torgue at clutch calculation	Limit exceeded in Ihreshold map	Nm	Torque monitoring active	1	N/A	0.24 second.	One drive cycle
		at clutch	error (TO_MIN_CLU_MON)	(38510)		(LV_TQL_MON_ACT_MON)			0.04 second	
	P1685	Monitoring of maximum torque	Maximum torque at clutch calculation	Limit exceeded in threshold map	Nen	Torque monitoring active	1	N'A	0.24 second.	One drive cycle
		at clutch	error (TQ_MAX_CLU_MON)	(220		(LV_TOL_MON_ACT_MON)			0.04 second	
	P1685	Monitoring of pedal values	Error in pedal value checks,	Umit exceeded in threshold map	- 5	Monitor engine speed (N_32_MON)	>= 0	rpm	0.48 second.	One drive cycle
			difference exceeds threshold	(15 2325 91)					0.04 second	
			(PV_AV_1_NON - PV_AV_2_MON)							
	01007	Manager of the second s	Entry TOC rate cale (at a	- 0.010	N	Description of the State of the State	- 0		0.48.0004	One days and
	P1007	woncoring or enroce position	UV TOO I MONLY TOO O MONI	>0313		acres eighe speep (n. 52 mon)	×v	ıtır.	0.04 second.	One anve cycse
	DIARS	Moniformo ol mana serficer	MAE colordation areas from MAE level	Low MAE limit oversetted in	25764	Monitor engine speed (N. 32, MCM)	> 850	17.00	0.48 second	One drive curls
	1 1000	none of the second second	exceeds threshold (MAE 1806)	theshold may (C.044 0.258)	4.44	secure eight specifie on more		- Q.O.	0.04 second	our and then
			excercise an entropy (more _more)	and a set of the former and					ever proving	
	P1689	Monitoring of actual indicated	Firstor in torgage calculation, torgage	Torque limit exceeded in	Nm	Torque moniforing active	1	N'A	0.48 second	One drive cycle
	1.000	encine lossue	rifference exceeds threshold	threshold man (30 88)	- 610	ILV TO NON ACT MON		117	0.04 second	0.00 0.00 0.00
			(TOLAV MON+TOLSP MON)			(4121404400410410				
	P1691	Monitoring of engine speed	Monitored engine speed exceeds	> 2656	ipm	Engine running (LV_ES)	1	N/A	0.48 second.	One drive cycle
		limit in Imphome	threshold (N_32_MON)						0.04 second	

Fig. 15: OBDII Code Table - (11 Of 13) Courtesy of BMW OF NORTH AMERICA, INC.

Company	Ends.	Magilas Chatage	Company Matter alian	Therebold	Freedad	Second on the	Easthia	Consider	Mender Time Level	140
Sustem	Code	Description	Criteria and Signal	Value	Ibilt	Baramaters	Makus	Hole	Erection of Chaster	Munice Sec.
oysteen	E1402	Monitoring of processor	Employ fact and inquest for disabled	Tarte.	- Chille	Key on J.V. KEY, CM.	value	N/A	0.48 second	One drive curde
I 1	P1002	satisfations	Enter for this request for disabled			Kary on (EV_KEV_ON)	· ·		one second.	One onve cycle
	1	carcososcies	power stages of write and in	DOT OTO MILE I	10.0				continuous	
	1	1	IHST_CTH_MO and	HST_CTR_MOS/ and	rea.					
	1	1	ENH CODE MO MUS	ENR CODE MO MOGO						
	1	1	(RST_CTR_MU_MU and	RST_CTR_MU_MU>7 and	N/A					
I 1	1	1	ERR_COD_1_MC_MU)	ERR_CODE_1_MC_MU-00						
	P1693	Monitoring of processor	Error for temportary request for			Key on (LV_KEY_ON)	1 1	N/A	0.48 second.	One dave cycle
	1	calculations	disabled power stages for MTC and						continuous	
	1	1	IV							
I 1	1	1	(RST_CTR_MU and	RST_CTR_MU>1 and	N/A					
	1	1	ERR_CODE_MU_MU)	ERR_COCE_MU_MU-o0						
	1	1	(RST CTR MU MU and	RST CTR MU MU>1 and	N/A					
	1	1	ERR_COD_1_MC_MU)	ERR_CODE_1_MC_MU<>0						
Clutch Solenoid	P1741	Open circuit	Performed by GIB (gearbox interface	NrA.	N/A	Battery voltage (VB)	>8	v	0.200 second.	One drive cycle
	P1742	Short circuit	box - dedicated low level control			CAN bus operational	1	N/A	0.020second	
	P1739	Communication Error	transmission control unit)			(CAN_CLU_CDN_COD)				
Secondary Pressure	P1751	Open circuit	Performed by GIB	N/A	N/A.	Battery voltage (VB)	i≓8	v	0.200 second.	One drive cycle
Solenoid	P1752	Short circuit				CAN bus operational	1 1	N/A	0.020second	
	P1749	Communication Error				(CAN_CLU_CDN_COD)				
Linear Actuator	P1787	Bepolar Stepper Motor. OC	Performed by GIB	16.4	N/A	Battery voltage (VB)	> 8	v	25 seconds,	One drive cycle
	P1788	Bipolar Stepper Motor, SCG							0.010 second	
	F1789	Bipolar stepper motor, motor				CAN Bus Operational	1	N/A		
		defaulted				(CAN_CLU_CDN_COD)				
	P1785	Bipolar stepper motor, drive								
		over temperature								
		-								
Switch Inputs	P0705	Communication Error	Ferformed by GIB	N/A	N/A	Battery voltage (VB)	>8	v	2 seconds,	One drive cycle
						CAN bus operational	1	N/A	0.010 second	
	1	1				(CAN_CLU_CDN_COD)				
Gearbox Interface	P1690	EPROM Checksum	Checksum incorrect, performed by	N/A	N/A	Relay battery voltage	>0.04	v	Immediate, once at power up	One drive cycle
Box			GIB							
	P1898	ECU Functionality	Internal Failure, performed by GIB	NA	N/A	CAN bus operational	1 1	N/A		
						(CAN CLU CON COD)				

Fig. 16: OBDII Code Table - (12 Of 13) Courtesy of BMW OF NORTH AMERICA, INC.

Component/	Fault	Monitor Strategy	Primary Mattunction	Threshold	Specified	Secondary	Enable	Specified	Monitor Time Length	MIL
System	Code	Description	Criteria and Signal	Value	Units	Parameters	Value	Units	Frequency of Checks	Illumination
Ratio Control	P1786	Ratio Plausibility	Integrated engine speed error (actual	> 110000	NA	Battery voltage (VB)	> 8	V I	7 seconds,	One drive cycle
			desired) exceeds threshold			CAN bus operational		N/A	0.1 second	
			(MOT_DIAG_CUMUL_ERR)			(CAN_CLU_CDN_COD)				
						Vehicle Speed (VS_CVT)	>18.64	mph		
						Engine speed (N)	>2030	rpm –		
Aix intake system	P1498	Comparison of modelled mass	Modelled MAF difference adaption	> 1.313.5	N/A	Engine running (LV_SYN_ENG)	1	N/A	0.24 second.	One drive cycle
Neak - Block 3		air floor at cylinder and mass	exceeds threshold relative to throttle			Engine speed stable (ABS N-	< 50	4pm	0.000 second	
		air flow at throttle	opening			N_AR_RED_MMV)				
			(DIF_AR_RED/AR_RED_TPS)			High pass filtered manifold pressure	<10000 in 10revs	NA. NV		
						(MAP_SEG_GRO_ERR)				
						High pass Nitered upstream manifold	<10000 in 016v	NA. NY		
						pressure				
						(MAP_UP_SEG_GRD_ERR)				
						TRIODE SUDIE (TPS_MAF_GRD)	<0.9008*TPS in 101evs	*TPS, rev		
						Inrode position (TPS)	<89.98			
						Manifold pressure (MAP)	>15.0002	10%		
	<u> </u>				<u> </u>	Engine speed (N_32)	> 704	ipm -		
Look - of the second - of	100000	A	Circle of Chevel	E			1		6	Total shirts a succession
Ambient temperature	P00/0	Amplent lemperature service	Electrical Criter	Dagnosis perioritied by	100	1994	DEA.	NºA	2 1000000,	I WO DAVE CYCLES
sensor		sanure		Inscriment Pack ECO				I	0.07 \$400%3	
Ambient temperature	P101F	Difference between Ambient	Difference between TAM and TIA	>20.25	~0	TIA deviation during period after	>3	~C	tod	Two drive cycles
sensor and intake Air	1	Temperature (TAM) Sensor				start	5			
Temperature sensor		and Intake Air Temperature				Cold start check				
plausibility		(TLA) Sensor values after cold				Diff TCO at key-off and key-on	>50.25	*C		
		start				Dill TCO and TIA at key on or	>3	~C		
						Diff TCO and TAM atkey-on	>3	"C		
		Difference between Ambient	Difference between TAM and	>5	*0	engine warmed up	0	5	0.1 seconds	Two drive cycles
		Temperature (TAM) and	TAM_MOL			(T_PLAUS_TAM_HOT)				
		modelled Ambient				vehicle conditions stable	0	3		
		Temperature when engine hot				(load,engine speed,vehicle speed)				
						(T_TAM_STAB)				
	1					modelled ambient temperature	0	•		
	1					function of infake air temperature.		I		
	1					airflow,vehicle speed		I		
						(T_TAM_MOL_STAB)				

Fig. 17: OBDII Code Table - (13 Of 13) Courtesy of BMW OF NORTH AMERICA, INC.

OBD SYSTEM DESCRIPTION

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

CATALYST MONITORING

General Description

The solution chosen to fulfill this OBD requirement is based on Oxygen Storage Capacity (OSC).

During a controlled stimuli (special A/F pulses during engine steady state conditions), the downstream O2 sensor signal is analyzed to evaluate the OSC of the catalyst.

The OSC is correlated experimentally with the global HC efficiency and HC emission during cycle. It represents the quantity of oxygen that is really used for the oxidation-reduction reaction by the catalytic converter (stored during the lean excursion and consumed during the rich excursion).

Fig. 18: HC Efficiency And HC Emission Cycle Courtesy of BMW OF NORTH AMERICA, INC.

Description Of The Open Loop Diagnosis

Catalyst monitoring is a sequential diagnosis made during steady state conditions. This monitoring is intrusive.

Three phases are necessary to complete the diagnosis:

- Engine stabilization
- Controlled stimuli stabilization
- Controlled stimuli diagnosis

If a problem has occurred with the downstream sensor during the catalyst diagnosis, a sensor diagnosis is done.

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

Fig. 19: Catalyst Monitoring And Phases Diagnosis Characteristic Diagram Courtesy of BMW OF NORTH AMERICA, INC.

VLS_DOWN: Downstream O2 sensor signal

FIL_DOWN_LAM_CAT: filtered signal for DOWN_DYN_CAT (= detection criteria) integration

FIL_DOWN_DYN_CAT: high filtered DW signal for mean richness

During the 'Controlled stimuli - diagnosis phase' the downstream sensor activity is measured and corresponds to the OSC of the catalyst. If this activity is high (low OSC) the diagnosis criteria DOWN_DYN_CAT is high.

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

Fig. 20: Downstream O2 Sensor Signal - Graph Courtesy of BMW OF NORTH AMERICA, INC.

If one of the monitoring conditions is not met or if the mass air flow deviates too much from the value stored at the start of this test phase, the test is interrupted and the system returns to the out of diagnosis state.

Downstream sensor diagnosis phase:

If throughout the CONTROLLED STIMULI phase, repeated several times, the downstream sensor has not reacted, the A/F closed loop mode is delayed in order to test the sensor.

If the downstream sensor sends a signal indicating a rich (lean) mixture, the injection time is forced to lean (rich) until the sensor switches over or until the end of a delay. If this delay expires, the sensor is treated as failed. This may be a result of:

- A leak in the exhaust line,
- A damaged sensor.

Electrical failures (short circuit and open circuit of signal and heater) are detected during the COMPREHENSIVE COMPONENTS diagnostics.

If the catalyst diagnosis has completed without any problem, the downstream sensor is treated as GOOD and a sensor diagnosis is not necessary.

If monitoring conditions for the diagnosis are fulfilled, the system informs the OBD sequencer and waits for its authorization to start catalyst diagnosis. The OBD sequencer manages the priorities in case of multiple

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

diagnosis requests (catalyst diagnosis and O2 sensor diagnosis).

MISFIRE MONITORING

General description

Measurement Principle

Segment period acquisition

Segment period acquisition

<u>Fig. 21: Segment Period Acquisition</u> Courtesy of BMW OF NORTH AMERICA, INC.

The acquisition of the segment period is performed through an angular range of 180° crank angle.

NC_CYL_NR is the number of cylinder.

The segment starts NC_MIS_PHA°CA before TDC.

To compute an engine roughness value for a 4 cylinder engine, n = 9 contiguous valid segments are required.

Physical background

Misfire induces a decrease of the engine speed and thus a variation in the segment period. The misfire detection is based on monitoring for this variation of segment period.

Main causes of misfiring: injector shut-off, fuel pressure problems, fuel combustion problems, ignition cut-off.

Limitations Of This Strategy

Variation in the engine torque caused by phenomenon other than misfiring must be recognized in order to avoid false misfire detection and inhibit misfiring monitoring.

For example:

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

- negative torque
- trailing throttle / acceleration transition
- ignition retardation without change limitation
- rough road detection
- cylinder shut-off (ex: for engine speed limitation, vehicle speed limitation)
- crankshaft oscillation

Algorithm

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

Fig. 22: Flow Chart - Algorithm Courtesy of BMW OF NORTH AMERICA, INC.

Statistics: Fault Processing

For one driving cycle.

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

<u>Fig. 23: Flow Chart - Fault Processing</u> Courtesy of BMW OF NORTH AMERICA, INC.

EVAPORATIVE SYSTEM MONITORING

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

General Description

The evaporative system monitoring uses a Leak Detection Pump (LDP). The LDP is an electrically/vacuumactuated device that pressurizes the evaporative emission system for the purpose of detecting leaks and verifying canister purge valve operation.

Leak Detection

The leak detection is performed by means of two main phases:

- Tank system over-pressurizing
- Leak magnitude measurement

During the leak detection, the canister purge valve and the canister vent valve (CVV) are closed.

The ECU (Engine Control Module) causes the pump diaphragm to cycle at fixed frequency and for a fixed number of strokes. As air is drawn from outside and pumped into the fuel tank system, the system pressure increases.

Once the tank system over-pressure phase is finished the leak measurement phase starts. The diaphragm stroke is limited by the top of the diaphragm chamber and a position defined by a reed switch level. If the tank pressure drops below a certain value, the LDP will perform a pump stroke in order to maintain the over-pressure in the tank system. Thus the time between pump strokes ("pulse interval") is an indication of the system tightness.

If there is a leak, the cycling time or "pulse interval" stabilizes at a rate, which compares to the leakage loss.

If there is no leak in the system the cycling time or "pulse interval" becomes longer.

The "pulse interval" is measured by the ECU, which determines whether or not the leak exceeds a defined threshold. Several "pulse interval" measurements are carried out to secure the test.

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

System Pressure

Fig. 24: Tank System Over-Pressure Phase And Leak Measurement Phase Diagram Courtesy of BMW OF NORTH AMERICA, INC.

Canister Purge Valve Check

When the tank system is tight or the leak measured is smaller than a defined threshold the canister purge valve is checked using the same approach as for the leakage detection. The purge valve is opened and each time the reed switch level is reached the LDP performs a pump stroke in order to maintain the pressure in the tank system.

If the canister purge valve is not blocked the cycling time or "pulse interval" becomes shorter. In this case the purge valve operates correctly (not stuck or blocked).

If the canister purge valve is blocked in a closed position or the connection tube canister/valve is pinched the cycling time or "pulse interval" remains long.

The "pulse interval" is measured by the ECU, which determines whether or not the purge flow exceeds a defined threshold. Several pumping cycles are carried out to secure the test.

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

Fig. 25: Canister Purge Valve Pressure Diagram Courtesy of BMW OF NORTH AMERICA, INC.

Evaporative Monitoring - Block Diagram

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

Fig. 26: Evaporative Monitoring - Block Diagram Courtesy of BMW OF NORTH AMERICA, INC.

FUEL SYSTEM MONITORING

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

General Overview

The fuel system diagnosis monitors the fuel delivery system for its ability to provide compliance with emission standards.

This diagnosis is continuously performed if enable conditions are fulfilled.

The fuel system diagnosis checks if the sum of short-term fuel trim (only based on upstream sensor voltage monitoring) and long term fuel trim (one additive & one multiplicative term) are within a band.

Out of this band a failure is detected.

Different fuel system problems may occur:

- Fuel pressure problem: short term fuel trim deviation which induces emissions problem, but no effect on the catalyst window set point because of homogenous mixture, in steady engine conditions.
- Cylinder misdistribution problem due to injector failure: short-term fuel trim deviation with effect on the catalyst window set point because non-homogeneous mixture.

Example: lean engine

LAM_MAX = restriction for rich limit LAM_MIN = restriction for lean limit C_LAM_MAX_FSD = threshold for rich exceeding C_LAM_MIN_FSD = threshold for lean exceeding

Fig. 27: Fuel System Monitoring Diagram Courtesy of BMW OF NORTH AMERICA, INC.

OXYGEN SENSOR MONITORING

General Overview

The upstream sensor will cause an emission increase when its response time increases too much (A/F Loop period or frequency check).

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

Fig. 28: Oxygen Sensor Monitoring Diagram Courtesy of BMW OF NORTH AMERICA, INC.

The period of the A/F loop is measured and the number of lean/rich transitions are counted. The sum of valid periods is then calculated.

The corresponding limit period versus operating point (N, MAF) is acquired.

A failure is detected when the sum of the measured periods exceeds the sum of the corresponding limit.

Description Of The Strategy

O2 sensor monitoring is a sequential diagnosis made during steady state conditions.

The diagnosis is composed of two main phases:

Measurement

Diagnosis

Measurement Phase

The algorithm is based on the period measurement (starting from lean to rich sensor transition). To avoid non-

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

representative measurement, the period is valid only if the sensor has been below a low threshold and above a high threshold between 2 consecutive lean/rich transitions.

Fig. 29: Upstream Sensor Signal - Graph Courtesy of BMW OF NORTH AMERICA, INC.

If one of the diagnostic conditions is not met, the test is stopped and the system returns to the OUT OF DIAGNOSIS state.

Diagnosis Phase

The sum of the periods is compared to limits values, to detect a failure.

As an example, the typical behavior of the period criterion versus NOx emissions are shown in the following chart).

Oxygen Sensor Monitoring Diagnosis

Fig. 30: Oxygen Sensor Monitoring Cycle

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

Courtesy of BMW OF NORTH AMERICA, INC.

If O2 sensor diagnosis conditions are fulfilled, the system informs the OBD sequencer and waits for its authorization to start the measurement phase. The OBD sequencer manages the priorities in case of multiple diagnosis requests (catalyst diagnosis and O2 sensor diagnosis).

THERMOSTAT MONITORING

General Description Of Thermostat Monitoring

The purpose of the coolant thermostat is to effect a quick engine warm up after start. The thermostat is closed after engine start to limit the coolant circulation to the radiator until the thermostat regulating temperature is reached. If the thermostat is stuck open, the coolant circulation will not be limited after start and the engine warm up time will increase. This may cause an increase in emissions.

To monitor the thermostat function, a modelled value for coolant temperature is calculated. This monitoring is used for diagnosing a leaking thermostat or a thermostat stuck in the open position. When the temperature model has reached normal operating temperature the actual coolant temperature is checked to confirm that it has been above the normal thermostat opening temperature for sufficient time. If this is not the case the thermostat is declared stuck open.

Graphs showing the diagnostic operation with typical calibration values are given below.

TCO: coolant temperature (sensor)

TCO_SUB: modelled temperature

Normal Thermostat Operation

When TCO crosses 80.25°C (C_TCO_TH_MIN - C_HYS_TCO_TH_MIN), a timer is started and decremented as long as TCO>TCO_SUB. When TCO_SUB crosses 85.5°C (C_TCO_TH_MIN) then decision is taken.

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

Fig. 31: Normal Thermostat Operation - Graph Courtesy of BMW OF NORTH AMERICA, INC.

If timer is elapsed then thermostat is declared ok.

Thermostat Failure

Too Slow Coolant Temperature Increase

When TCO crosses 80.25°C (C_TCO_TH_MIN - C_HYS_TCO_TH_MIN), a timer is started and decremented as long as TCO>TCO_SUB. When TCO_SUB crosses 85.5°C (C_TCO_TH_MIN) then decision is taken.

Fig. 32: Too Slow Coolant Temperature Increase - Graph Courtesy of BMW OF NORTH AMERICA, INC.

In this case timer is not elapsed: failure is detected. The coolant temperature increase is too slow

Too Low Coolant Temperature

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

When TCO_SUB crosses 85.5°C (C_TCO_TH_MIN) then decision is taken.

<u>Fig. 33: Too Low Coolant Temperature - Graph</u> Courtesy of BMW OF NORTH AMERICA, INC.

When TCO_SUB crosses 85.5°C (C_TCO_TH_MIN) then decision is taken.

PLAUSIBILITY DIAGNOSIS

These diagnosis check that some data acquisitions from different sensors correspond to data acquisition from other sensors under given engine operating conditions.

Idle Speed Control Diagnosis

Engine speed deviation from the nominal engine speed set point is monitored when the vehicle is stopped.

If the engine is at idle for a given time and under normal conditions for engine load, coolant temperature, battery voltage and canister vent valve opening the difference between engine speed set point and actual value is too low or too high, then an error is detected.

Camshaft Sensor Diagnosis

The camshaft sensor signal presents one edge (rising or falling) per engine revolution. The position of these edges is known vs. crankshaft long tooth position.

A plausibility diagnosis is performed that compares camshaft (CAM) and crankshaft signals. The CAM edge must be in a defined window of crankshaft teeth in order to declare the CAM signal as valid.

If a CAM error is detected after the camshaft and crankshaft signals have synchronized the engine will remain in normal operation mode.

If insufficient time is available at engine crank to determine the camshaft and crankshaft synchronization before a Cam error is detected the correct firing cylinder bank cannot be determined. In this case:

The sequential fuel injection will run with a constant injection phase of -180° CRK, and the engine will run

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

open loop. In this condition there is a 50% probability of the injection starting at the correct crankshaft position. This "Limp Home" condition minimizes the impact engine responsiveness due to excessive time periods between fuel injection and inlet valve opening.

Each ignition coil is fired every TDC.

Knock correction will take a constant default value.

Intake Manifold Pressure Sensor Diagnosis

Under certain conditions, the MAP (manifold pressure) sensor is checked for a coherent value vs. engine speed and throttle opening. These conditions are:

- MAP too low when engine stopped (in these conditions, MAP cannot be lower than the minimum ambient pressure).
- MAP too low at idle speed engine running (in these conditions, the engine cannot run with too low manifold pressure)
- MAP too low at full load for low engine speed (in these conditions, MAP cannot be lower than the minimum ambient pressure)
- MAP too high in deceleration (the engine management system calibration is tuned so that the MAP target value is 200 hPa during deceleration).

In case of error on MAP acquisition, the MAP information will be built up by using engine speed and throttle position information.

Motorized Throttle Controller (MTC) Diagnosis

In normal conditions, throttle set point and actual value must correspond within a tolerance determined given by controller performance under worst-case conditions (response time, overshoot...).

If an error is detected, then MTC H-bridge driver is switched off and engine speed is limited to a maximum of 2000 RPM.

Clutch Switch Diagnosis

When cruise control is active (clutch switch is only used for cruise control deactivation), it is checked that the clutch sensor does not flag a de-clutched engine.

Coolant Temperature Sensor

After start, a model coolant temperature is calculated based on coolant temperature at start, engine speed and load while running, time spent in idle and fuel shut-off.

When model temperature (TCO_SUB) reaches the threshold for closed loop activation, the system verifies that closed loop has been activated. TCO_SUB is tuned in order to rise slower than TCO and thus permits monitoring the plausibility of the coolant temperature information.

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

COHERENCE DIAGNOSIS

The following diagnoses check the coherence between two redundant signals:

Throttle Position Sensors

For safety reasons, the system has two sensors for throttle position. Signals from the two sensors are compared and must be within a given tolerance.

Two errors can be raised:

- Small discrepancy: in this case it is difficult to identify which sensor is wrong. For safety reasons, the system selects the highest one
- Large discrepancy: a plausibility check is performed using engine speed and mass air flow in order to determine which sensor is providing incorrect information.

Pedal Position Sensor

In case of discrepancy between the two pedal position sensors, the channel giving the smallest value is selected.

Brake Switches

If the two brake switches give different information, an error is raised. Cruise control is then inhibited.

TABLE OF ECM INPUT / OUTPUT SIGNALS

Power Control Unit (PCU)

INPUT SIGNALS OUTPUT SIGNALS

Input Signals	Output Signals
Gearbox interface unit (GIU) ⁽¹⁾	Gearbox interface unit (GIU) ⁽¹⁾
Coolant Temperature	Throttle Motor H Bridge Driver
Gearbox Oil Temperature (CVT only)	Oxygen Sensor Heater Upstream
TMAP Sensor - combined Intake Air Temperature and Manifold Air Pressure (1.0/2.5 bar)	Oxygen Sensor Heater Downstream
MAP Upstream - Manifold Air Pressure (Cooper S only)	Cannister Purge Solenoid
Knock Sensor	EVAPS Leak Detection Pump Solenoid
Thottle Position Sensor 1 / 2	Immobiliser
Pedal Position Sensor 1 / 2	Engine Speed Sync (Service Tool)
Air-Con Pressue Sensor	CAN
Oxygen Sensor Upstream	K-Line
Oxygen Sensor Heater Upstream	Fuel Pump Relay
Oxygen Sensor Downstream	Main Relay
Oxygen Sensor Heater Downstream	Cooling Fan 1 / 2 Relay

2005 ENGINE PERFORMANCE Self-Diagnostics - MINI

Camshaft Sensor	A / Con Clutch Relay
Crankshaft Sensor	Gearbox Shift Interlock Relay (CVT only)
Gearbox Shaft Speed (CVT only)	Ignition Coil A / B
Clutch Switch	Injector 1 / 2 / 3 / 4
Brake Switch	
Cruise Control Input Signals	
Alternator Load Sensor	
Road Speed (via CAN from ABS-Wheel Speed)	
EVAPS Leak Detection Reed Switch	
CAN	
K-Line	
(1) see table below	

Gearbox Interface Unit (GIU) (Model Mini Cooper CVT Only)

INPUT SIGNALS OUTPUT SIGNALS

Input Signals	Output Signals
Print Selector Position	Ratio Control Motor
P/N Gearbox Switch	Clutch Solenoid Drive
Steptronic Switches-Selector	Secondary Pressure Solenoid Drive
Steptronic Switches - Steering Wheel	CAN
CAN	PRND Selector LED'S

